.NET Quick Reference Card

Reflection IT

C# String escape sequence
Escape sequence | Character name Refl ect i on it
\ Single quote

\" Double guote

\\ Backslash

\0 Null

\a Alert

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Veritcal tab

C# Numeric & Char Literals

object x = 10; int

object x = Ox0A; int (hexadecimal)
object x = 10L; long

object x = 10U; Uint

object x = 10UL; Ulong

object x = 10.5M; Decimal

object x = 10.5F; Float

object x = 10.5D; double

objectx ='X' char

object x = '/x0058'

char (hexadecimal)

String Formatting

The format parameter is embedded with zero or more format specifications of the form, {N [, M]1[: formatString]}

where:

e Nis a zero-based integer indicating the argument to be formatted.
e Mis an optional integer indicating the width of the region to contain the formatted value, padded with spaces. If
the sign of M is negative, the formatted value is left-justified in the region; if the sign of M is positive, the value is

right-justified.

o formatString is an optional string of formatting codes

Sample:)
CultureInfo ci =
string s =

Result:
| $4,321.04|

CultureInfo.CreateSpecificculture('en-us");
string.Format(ci, "|[{0,12:Cc}|\r\n{1:D}", 4321.04, new DateTime(2003, 9, 14));

Sunday, September 14, 2003

Standard Numeric Format Strings
Standard numeric format strings are used to return common numeric string types. A standard format string takes the form
Axx where A is an alphabetic character called the format specifier, and xx is a sequence of digits called the precision

specifier.

Format specifier Description

Corc Currency

Dord Decimal (decimal integer)

Eore Exponent

Forf Fixed point

Gorg General

Norn Number

Porp Percentage

Rorr Round-trip (for floating-point values only); guarantees that a humeric value converted to a string
will be parsed back into the same numeric value

Xor x Hex

1-4 www.reflectionit.nl 5/24/2004

.NET Quick Reference Card Reflection IT

Sample:

int i = 123456;

console.writeLine("{0:Cc}", i); // € 123,456.00
console.writeLine("{0:c4}", i); // € 123,456.0000
console.writeLine("{0:D}", 1i); // 123456

Custom Numeric Format Strings

0 Display zero placeholder

Display digit placeholder
Decimal point

, Group separator

% Percent notation

E+0, E-0, e+0, e-0 Exponent notation

; Section separator, specifies different output if the numeric value to be formatted is positive,
negative, or zero

Sample:

console.writeLine("{0:#0.00;#0.00-;<zero>}", 123456); // 123456.00
console.writeLine("{0:#0.00;#0.00-;<zero>}", -123456); // 123456.00-
console.writeLine("{0:#0.00;#0.00-;<zero>}", 0); // <zero>

Standard DateTime Format Strings

Short date pattern

Long date pattern

Short time pattern

Long time pattern

Full date/time pattern (short time)

Full date/time pattern (long time)

General date/time pattern (short time)

General date/time pattern (long time)

Month day pattern

Sortable date/time pattern; conforms to ISO 8601

Universal sortable date/time pattern

<|clv |=z|lote |m|=|d|ro|la

Year month pattern

Custom DateTime Format Strings

d, dd, ddd, dddd Days: ‘single’ digit, double digit, abbreviated name, full name

M, MM, MMM, MMMM | Month: ‘single’ digit, double digit, abbreviated name, full name

Y, VY, YYYY Years: ‘single’ digit, double digit, four digit

g or gg Displays the era (A.D. for example)

h, hh, H, HH Hours: 1-12 ‘single’ digit, 1-12 double digit,1-23 ‘single’ digit, 1-23 double digit
m, mm Minutes: 0-59 ‘single’ digit, 0-59 double digit

S, SS Seconds: 0-59 ‘single’ digit, 0-59 double digit

f, ff, fff, ..., fffffff Displays seconds fractions: one digit, two digits, three digits, ... , zeven digits
t First character of the A.M./P.M. designator

: Time separator

/ Date separator

g or gg Displays the era (A.D. for example)

2-4 www.reflectionit.nl 5/24/2004

.NET Quick Reference Card

Reflection IT

Regular Expressions

Character

Description

\

Marks the next character as a special character, a literal, a backreference, or an octal escape. For example,
'n' matches the character "n". "\n' matches a newline character. The sequence '\\' matches "\" and "\("
matches "(".

Matches the position at the beginning of the input string. If the RegExp object's Multiline property is set,

also matches the position following '\n' or "\r'.

Matches the position at the end of the input string. If the RegExp object's Multiline property is set, $ also
matches the position preceding "\n' or '\r".

Matches the preceding character or subexpression zero or more times. For example, zo* matches "z" and
"z00". * is equivalent to {0,}.

Matches the preceding character or subexpression one or more times. For example, 'zo+' matches "zo" and
"z00", but not "z". + is equivalent to {1,}.

Matches the preceding character or subexpression zero or one time. For example, "do(es)?" matches the
"do" in "do" or "does". ? is equivalent to {0,1}

{n}

n is a nonnegative integer. Matches exactly n times. For example, '0{2}' does not match the '0' in "Bob,"
but matches the two o's in "food".

{n}

n is a nonnegative integer. Matches at least n times. For example, 'o{2,}' does not match the "0" in "Bob"

and matches all the o's in "foooood". '0{1,} is equivalent to 'o+'". '0{0,}' is equivalent to 'o*".

{n,m}

m and n are nonnegative integers, where n <= m. Matches at least n and at most m times. For example,
"0{1,3}" matches the first three o's in "fooooood". '0{0,1}' is equivalent to '0?'. Note that you cannot put a
space between the comma and the numbers.

When this character immediately follows any of the other quantifiers (*, +, ?, {n}, {n,}, {n,m}), the

matching pattern is non-greedy. A non-greedy pattern matches as little of the searched string as possible,

whereas the default greedy pattern matches as much of the searched string as possible. For example, in
the string "0000", '0+?' matches a single "0", while 'o+' matches all 'o's.

Matches any single character except "\n". To match any character including the '\n', use a pattern such as

T\s\S].

(pattern)

Matches pattern and captures the match. The captured match can be retrieved from the resulting Matches

collection, using the SubMatches collection in VBScript or the $0...$9 properties in JScript. To match

parentheses characters (), use "\(' or '\)'.

(?:pattern)

Matches pattern but does not capture the match, that is, it is a non-capturing match that is not stored for
possible later use. This is useful for combining parts of a pattern with the "or" character (|). For example,
'industr(?:y|ies) is a more economical expression than 'industry|industries'.

(?=pattern)

Positive lookahead matches the search string at any point where a string matching pattern begins. This is a
non-capturing match, that is, the match is not captured for possible later use. For example 'Windows
(?=95|98|NT|2000)" matches "Windows" in "Windows 2000" but not "Windows" in "Windows 3.1".
Lookaheads do not consume characters, that is, after a match occurs, the search for the next match begins
immediately following the last match, not after the characters that comprised the lookahead.

(?!pattern)

Negative lookahead matches the search string at any point where a string not matching pattern begins.

This is a non-capturing match, that is, the match is not captured for possible later use. For example

'Windows (?!95]98|NT|2000)" matches "Windows" in "Windows 3.1" but does not match "Windows" in
"Windows 2000". Lookaheads do not consume characters, that is, after a match occurs, the search for the
next match begins immediately following the last match, not after the characters that comprised the

x|y

lookahead.
Matches either x or y. For example, 'z|food' matches "z" or "food". '(z|f)ood' matches "zood" or "food".

[xyz]

A character set. Matches any one of the enclosed characters. For example, '[abc]' matches the 'a' in

"plain".

["xyz]

A negative character set. Matches any character not enclosed. For example, '[*abc]' matches the 'p' in

"plain".

[a-Z]

A range of characters. Matches any character in the specified range. For example, '[a-z]' matches any

lowercase alphabetic character in the range 'a' through 'Z'.

[a-Z]

A negative range characters. Matches any character not in the specified range. For example, '["a-z]'

matches any character not in the range 'a' through 'z'.

\b

Matches a word boundary, that is, the position between a word and a space. For example, 'er\b' matches

the 'er' in "never" but not the 'er' in "verb".

\B

Matches a honword boundary. 'er\B' matches the 'er' in "verb" but not the 'er' in "never".

www.reflectionit.nl 5/24/2004

.NET Quick Reference Card Reflection IT

\cx Matches the control character indicated by x. For example, \cM matches a Control-M or carriage return
character. The value of x must be in the range of A-Z or a-z. If not, c is assumed to be a literal 'c'
character.

\d Matches a digit character. Equivalent to [0-9].

\D Matches a nondigit character. Equivalent to [~0-9].

\f Matches a form-feed character. Equivalent to \x0Oc and \cL.

\n Matches a newline character. Equivalent to \x0a and \cJ.

\r Matches a carriage return character. Equivalent to \x0d and \cM.

\s Matches any white space character including space, tab, form-feed, and so on. Equivalent to [\f\n\r\t\v].

\S Matches any non-white space character. Equivalent to [\f\n\r\t\v].

\t Matches a tab character. Equivalent to \x09 and \cI.

\v Matches a vertical tab character. Equivalent to \x0Ob and \cK.

\w Matches any word character including underscore. Equivalent to '[A-Za-z0-9_]".

\W Matches any nonword character. Equivalent to '[*A-Za-z0-9_]".

\xn Matches n, where n is a hexadecimal escape value. Hexadecimal escape values must be exactly two digits

long. For example, "\x41' matches "A". "\x041' is equivalent to "\x04' & "1". Allows ASCII codes to be used
in regular expressions.

\num Matches num, where num is a positive integer. A reference back to captured matches. For example, '(.)\1'
matches two consecutive identical characters.

\n Identifies either an octal escape value or a backreference. If \n is preceded by at least n captured
subexpressions, n is a backreference. Otherwise, n is an octal escape value if n is an octal digit (0-7).

\nm Identifies either an octal escape value or a backreference. If \nm is preceded by at least nm captured

subexpressions, nm is a backreference. If \nm is preceded by at least n captures, n is a backreference
followed by literal m. If neither of the preceding conditions exist, \nm matches octal escape value hm
when n and m are octal digits (0-7).

\nml Matches octal escape value nml when n is an octal digit (0-3) and m and | are octal digits (0-7).

\un Matches n, where n is a Unicode character expressed as four hexadecimal digits. For example, \uO0OA9
matches the copyright symbol (©).

4-4 www.reflectionit.nl 5/24/2004

